
-Rit3i 682 LIMIT THEOREMS FOR THE EIGENVALUES OF PRODUCT OF TWO t/t
RANDOM MRTRICES(U) PITTSBURGH UNIV PH CENTER FOR
MULTIVARIRTE ANALYSIS Y 9 YIN ET AL. DEC 82 TR-82-39

UNCLASSIFIED RFOSR-TR-83-0697 F49628-82-K-0081 F/G 1211 NL

NoeElEIIEEEEEEEEEEEEllI
/iE



III~

1,11 5 112.8 1*2.5
111111.2

I o 111112.

L.2 134 11J6'I'I ll II Iliiil

MICROCOPY RESOLUTION TEST CHART

NATIDNAi F4IPPFAU MC STANDARDS 4t~

S ."9 5



AFOSR-TR- 83 - 06 97

LIMIT THEOREMS FOR THlE EICENVALUES OF
PRODUCT OF TWO RANDOM MATRICES

Y. Q. Yin and P. R. Krishnaiah*

4China University of Science and Technology
and

Center for Multivariate Analysis

CID
* Center for Multivariate Analysis

University of Pittsburgh

4U 2~h 4 0

63S 08 19 090



LIMIT THEOREMS FOR THE EIGENVALUES OF

PRODUCT OF TWO RANDOM MATRICES

Y. Q. Yin and P. R. Krishnaiah*

China University of Science and Technology
and

Center for Multivariate Analysis

December 1982

Technical Report No. 82-39 L

87a,,

.Center for Multivariate Analysis . j

University of Pittsburgh
Ninth Floor, Schenley Hall " . , , .

Pittsburgh, PA 15260

*The work of this author is sponsored by the Air Force Office of

Scientific Research under Contract F4962$-82-K-#01. Reproduction

in whole or in part is permitted for an-y purpose of the United

States Government.

, A R ~'M E 3F?r v: ,.' $5:IENTIFIC£ %t' "..... -, .
A IR F,. ......N TI,- E C" . " "',':.. O 'T

MATTH N J. .L-,:';-
6 Chief, Jechnicai Tnformation Divistou



1. INTRODUCTION

The distributions of the eigenvalues or functions of

the elgenvalues of random matrices are very useful in test-

ing various hypotheses in multivariate statistical analy-

sis. These distributions are useful in nuclear physics

also since the behaviour, of the energy levels at high

excitation levels in nuclear physics may be explained by

considering the distributions of the eigenvalues of cer-

tain random matrices. In the area of multivariate statis-

tical analysis, the asymptotic distribution theory is es-

sentially restricted to the case when the sample size tends

to infinity holding the number of variables fixed. But,

many situations arise when the experimenter is confronted

with the problem of drawing inference from the data when

the number of variables is very large. Wigner [7] con-

sidered the problem of deriving the distributions of the

eigenvalues of the "Gaussian matrix" when the number of

variables tends to infinity; Jonssrn [4,5]. Wachter [6]

and others have investigated the distributions of

the eigenvalues of the sample covariance matrix when the

number of variables tends to infinity. In this paper, we

will show that the spectral distributions of a sequence of

the products of the random matrices will tend to the dis-

tribution function in the limit as the number of variables

tend to infinity. An application of this result in deriving

the distributions of eigenvalues of the multivariate F

matrix when the number of variables tends to infinity will

be discussed in a subsequent paper.



2. PRELIMINARIES

Let A be a pxp matrix with real cigenvaluesp

t < Q2 < '< 9 " Then, we define a distribution function
1- -2- p

as

F (x) - #{i: ). < ,
p p

where #{ } denotes the number of elements of the set { }.

We call this function the spectral distribution function of

A.

We are interested here in a sequence {A } of randomP

matrices, each A has only real eigenvalues. If the spectral
p

distribution F (x) of A tends to a nonrandom distribution
p p

function F(x) as p - ,, in some sense, then we say that the

sequence {A } has a limit spectral distribution (in the given
p

sense) F(x).

Jonsson [4,5] proved that a sequence of Wishart matrices

has a limit spectral distribution. Wachter [61 got more

general results, but he still considered matrices of Wishart

type as was done by Crenander and Silverstein [3].

In this article, we consider a different type of random

matrices, namely products of certain random matrices.

Let X , I, j = 1,2,... be distributed independently
ij

and identically as normal with mean zero and variance one.

Also, let

W = X
T

P

be a Wishart matrix where

X= (Xj, l<i<p, l<j<m).

Then W is known to be the Wishart matrix wiLh in degrees of
p



freedom.

For each p>1, let Tp= (U,_ l<i<p, l<j<p) be a matrix
p ii'

of random variables. We suppose t P> and ,for

any i, j = 1,2,...,p, p = 1,2,...

Our main result is the following theorem.

Theorem. Suppose

(1) {X Ij and T 's are independent
p

(2) the limit lim R = y exists and is finite
m

m, P-

(3) if G (x) is the spectral distribution of TO, for
p pk

each fixed k. Efxkd G (x) are bounded as p .

(4) lrm x kn d G (x) H exists, for k= 1,2,..., in L2 (P),

and H =+-(Carleman's condition, see Feller[2])
k=l1

Then, the sequence [I- W T has a limit spectral distribution

in probability, i.e. if F is the spectral distribution of
p

f- W T ) then there is a distribution function F such that
m pp

F (x) 4 F(x) in pr. as p for any x. F(x) is nonrandom.
p

If F (x) is the spectral distribution of 1 W T
p m p p

and M k xk dF (x) is the k-th moment of F (x), we shall

prove the theorem by proving

(5) Ek = lm EM k  exists for k = 1,2,3,...,
kE k

P (6) Var Mk O as p-o, for k= 1,2,...,
1

(7) ZE2k =

2



The main difficulty is to prove (5). In order to prove

(5), we need to develop a theory on a special kind of multi-

graphs and we call them Q-graphs. Thus our work involves

combinatorial problems.

We will use the following lemma.

Lemma A. EifxkldG (x) ... fxkhdG (x)-H k*...H - 0 as p-p ,

for any fixed positive integers kl,...,k h'

Proof. We prove by induction on h. For h = 1, this is

a direct consequence of condition (4). Suppose Lemma 4 is

true for h - 1. Then

(h) fi ExkldG (x) ... xkhdG (x) -H H
E p - kh

k1 h

+ E if x dG (x) ... .f x d G (x) -H kI-Hkh 1

< E..kh d (x) ... () -Efx dGp(x)- Hkh+E(h-)hk

So, we have only to prove E x kdGp(x) ... xhldc(x) 2 is

bounded.

Let k = max(kl,...,kh l) For some a>2, by tl6lder in-

equality,

Jx dGp(x) -...JxknldGp(x) < I fxkdGp(x) I fx dGp(X).

But if k 1 > ka is any integer, by condition (3),

EfxkadG (x) EJ xkadGp(x) + EJ xkadGp(x)

x<l x>l

S1 + Ex dC(X) 1 1 + E x dG (x)

x>l x>l

which is bounded.



3. SOME RESULTS ON GRAPH THEORY

We first prove some results on graph theory.

Let V,E be two finite sets. Suppose there is a function

g:E-Vx V. Then (V,E,g) is called a multidigraph. If xcV, ycV,

(x,y) will denote one of those edges in E whose g image is (x,y),

sometimes we write xy instead of (x,y).

If vfV occurs in the list {g(e) = (gl(e),g 2 (e)), c E}

as gl(e) or g 2 (e) just d times, then we say that the degree of v is d.
,

Definition. Let (VE,g) be a multidigraph. If it satisfies

the following conditions, then we say that it is a Q-graph:

01 Each vertex (i.e. element of V) has degree 2.

20. V is divided into disjoint classes such that the

graph is class-connected, i.e. for any two

classes A and B there are classes A=A 0 ,A 1 ,...,A r  B

and edges (xiy 1 ) (i.e. element of E) with x i E Ai-l,

Yi c A i l

* For Q-graphs we have the following results.

Lemma 1. A Q-graph C with k vertices and w classes

. consists of at most k-w+1 cycles (we see loops as cycles).

G consist's of just k-w+l cycles if and only if

01 Each cycle meets each class in at most one vertex.

02 °
. There can be no such sequences as

A ,CIA 2,C2,... ,A ,C ,A
l''22' r r 1

where A 's are different classes, C i 's are different

cycles and C i meets Ai and Ai+l for i=l,2,...,r(Ar+l=A 1

Proof. It is evident that a Q-graph consists of disjoint

cycles.

4



Let G be a Q-graph with k vertices and w classes. Suppose

G has maximum number of cycles. We prove that conditions 10

and 20 are fulfilled.

Suppose that cycle C of C meets class A in x and y,

xj y are two vertices. We replace C b'y two loops (x,x) and

(y,y) in case C has only two vertices. Otherwise, suppose

C X x .
1 x2 3  - xr x 1

in which x 1 = x, x= y. Then we replace C by loop (x,x)

and cycle
C ..= xxx

S 1'' i-i xi+l ... Xr x 1

The resulting graph is still a Q-graph with k vertices and w

classes, but the number of cycles has increased. This con-

tradicts that the number of cycles of the graph G is maximal.
0

Suppose 2 is not satisfied, and there is a sequence

AICIA 2C 2,... ,A r,Cr A

of different classes A i's and different cycles C 's, such that

Ci meets Ai and Ai+A lr+1=A1) . We replace Cr by loops construc-

ted from all vertices on C which belong to A and the cycle obtained
r1

from C by deleting all these vertices. The resulting graphr

is also a Q-graph with k vertices and w classes, but with more

cycles.

Thus 1 and 20 are satisfied.

In the above proof we see that any Q-graph with k vertices

and w classes can be replaced by a Q-graph with the same k and

. w, with not less cycles and the latter Q-graph satisfies 10 and

20.

5



In the following we prove that any Q-graph with k vertices

and w classes satisfying 10 and 20 must have k-w+l cycles.

Let C and C be two arbitrary cycles, passing through

some class A simultaneously, and both contain vertices outside

of A, C 1  ' 'X lZ '. . . C2  ='.'x 2 y 2z 2 "''' Y1  y2 A.

Then we replace C and C by C1 and C', and C' is the loop
1 2 121

YlYl, C 2 -. xY 2 z 2 .X 2 Z .'

Because class-connectivity is preserved, this proeedure

can be continued until there remains only one cycle C which

is not a loop. C must meet every class. We note that in this

course k,w and the number of cycles do not change. C has

w vertices, the remaining vertices constitute k-w loops.

So, there are k-w+l cycles.

Let G be a multigraph (V,E,g). Let F be a partition of

V into disjoint subsets, i.e. F is a set of subsets of V,

these subsets are mutually disjoint and their union is V.

Let f: V-+F be the mapping such that f(v) is the subset in F

which contains v, for any v E V. If we use f x f to denote

the mapping Vx V- Fx F with f x f:(vl,v 2 ) -7i (f(v 1 ),f(v 2 )), then

q



evidently G =. (F,E,(f x f)og) is also a multigraph. This

multigraph is said to be obtained from G by Identification

according to F, and a subset in F with more than one ver-

tex is called an identified vertex.

In the following, by an arc of C we refer to a finite
sequence of edges of G xIX2, x2x3,...xri x such that only

xI and xr are identified vertices, i.e. only they are subsets in

F with more than one element.

Lemma 2. Let G = (V,E,g) be a multigraph with *k ver-

tices and w classes, and C = (F,E,(f x f)og) be the multi-

graph obtained from G by identification according to a partition

F of V. Let C be the number of arcs in C and n be the

number of free cycles (those cycles of C on which there are

no identified vertices). Then 1/2 + n < k-w.

Proof. Let rOtr,... ,rd  be the cycles of G. They are

so arranged that for any i, r. passes through a class which contains
1

vertices of some of the cycles r , ... I' Cycles ro'...,r i con-

stitute a subgraph G of G. If we identify vertices of C in suchGi  Gi

a way that 2 vertices are identified if and only they belong

to the same subset in F, we get a multigraph Gi" G d G

Let a i be the number of arcs in Ci(with respect to the

identified multigraph G). Evidently ai increases with i,

and ad a = 0. Let n i = I or 0 according as I' is free or not

(with respect to a), and c be the number of vertices of i

which belong to classes containing vertices of 0 . . ri_.

7
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'11

We assert -(ai - ai-) + ni <Ci, I : 1,2,...,r.

If n 1 .1l, then a1 - ai I = 0, but C i >0, so the in-

equality holds.

Now assume ni = 0. Take a class A of C, which contains

some vertices of rOp, Pr and some vertices of r Let
0 i-i

the common vertices of A and Pi be xl,. .. ,x e  among which

X ,X2,....Ix b  take part into identification with verti - of

r ... ri 1 r or that of r.. There are five ways to id ify:

(1) A single x is identified with an identific

vertex y of C 1il

(2) A single x is identified with an unidentified

vertex y of Gi I

(3) Several Xc's are identified with an identified ver-

tex y of C together,

(4) Several x 's are identified with an unidentified
c

vertex y of G together.

(5) Several x 's are identified together, without vertices of

GiC 1 taking part into this identification.

and the increment of number of arcs by the above five different

ways of identification are the following, respectively:

(1) one,

(2) two,

(3) number of these X 's
c

(4) number of these X 's plus one,
c

(5) number of these X 's.
c

In any case, the increment of the number of arcs does not exceed twice

8



7

the number of vertices of F i in A taking part into these identifi-

cations. Summing over all such classes A, we get

(aI - a )i-l + q i "'

because ni = 0. Thus

+ r C
21 r

i=1

r
We now prove < k-w, by proving that there is a

1 r
Q-graph with k vertices and w classes but with more thAn .

1

cycles, so, E I < k-w+l.

Begin from rI. I has r vertices belonging to classes

in which there are vertices of r 0 We let xl, be one of

these vertices. If there is only one such vertex, then we let

it remain there untouched. Otherwise, if 1 =...Y y 1 z

then we replace r1 by the loop (xlx 1 )and regard F1 the cycle ...yz.

We continue this process until there is only one vertex of F

which is in some class with some vertices of r0  together.

Then we get, from r 1 - 1) loops and a remaining cycle, totally

*i cycles. In the same way, we get,from F2,1 2  cycles,

At last, we get a Q-graph with k vertices and w classes and

1 + i~+...+C cycles, here 1 is for the cycle FO . Therefore

<k-w. And the lemma is proved.r -

Let A = {AI,. .. ,Aw  be a partition of {1,.. ,k} into

disjoint classes, and B = {B 1 ,...,B v  be a partition of

{1,2,...,2k} into disjoint classes. B will be called a parti-

tion subject to A if every B class is included in some set

9



of the form A* (2 Ab -l)U( 2 Ab) B is called even if every

class of it contains just even number of elements. If every

class of B h-as just 2 numbers then B will be called a

pairing.

Lemma 3. Let A= {AI...,A } B= {Bi,...,B v ) be parti-
1' w

tions of {l,2,...,k} and {1,2,...,2k} respectively, B be

subject to A and even. Suppose at least one B class has

more than 2 elements. Then,

tI k-w 2iS = t t t (p k-w+) in L 2 . *
2 3 4 5 2k 1

Here means the summation is taken over all (il, 2i....2k)

for which 1< I1 < p,... , 1 <i2k <p, and if n,B belong to the

same B class, i = i

Proof. It is evident that we can find a pairing D of

the set {1,2,...,2k} subject to B, i.e. each pair is a sub-

set of some B-class.

If we regard 12i 3 1 4 5,.,12k iI as edges and pair

{i i b } as vertics if a, b are a pair in D, we get a multigraph G.
* .a' b

If we classify the vertices of G according to A, i.e. two ver-

tices (i i), fic,i ) belong to the same class if and ohly if
a' b ' cd

these four integers a,b,c,d all belong to an A* = (2A -I)U(2A ).
q q q

Thus we get a Q-graph, its class-connectivity is easy to see,

and it is evident that each vertex has degree 2.

We can further identify the vertices of G into another

multigraph G according to the partition B just as in Lemma

2, two vertices are identified if and only if the pairs defining

S _>

*In the following, we will write t.. instead of t.>
ij 13

* 10



them have indices included in the same B class.

Because a Q-graph consis'-s of disjoint cycles, we can

write the sum S as

t C1C 2 . .Cb,

here C 's are "cycles" of the form: C = t. tJ2J* .. ta a 31 J J2 J3 c l

corresponding to cycle jJ 2 J 3 .. jJ of . means we have

to identify further the indices whose subscripts belong to the

same B class.

For those cycles which are free, i.e. on which all ver-

tices need not further identifications, the summation can be

carried out:

i i tj tj ... t =tr T'= p xdCp(x).p

The remaining cycles are not free, they have indices identified

with other indices. But on these cycles there are two kinds of

indices, free and not free. Free means it occurs just twice.

Carrying out the summation with respect to free indices,

by the definition of multiplication of matrices,

(n I ) (n) k I  k 2  k
S talb ... tab tr T tr T ... tr T *

a,b 1 1 p p

here ,n have the same meanings as in Lemma 2. Notice that

each of the indices al,b...,a,,b occurs at least four times

*O in this list.

In general, let the general term of a sum of the form

(n) n
* t denotes an entry of the matrix T.

11



R i f (a f r (a r )g. 1 a 1 a 2  [a a ... gs~a1 s3 a

be a product, and each factor of it depends at most on two

indices and each index a occurs at least four times,

where the summatioii is over al,...,a a , ... ,a s Jl J...,a.

Then,

R22 <- flja1 )
". " f r(a )  gl ajl ' "~ ~f 1 ,

a1  ar at f a( 1  1a 1 as ,a _s ss

In fact, by Schwarz inequality

R 2 <Y f f2(a ) Y F(al'a2' ') 2

a a a2

The sum inside the bracket has the same property as R if we

regard a1 as constant. The inequality is thus proved by

induction. The case r -0 can be proved similarly. So,

n2  I n k 2a l k 2 .
a.bl.. Y L a 'I -(tr T ...(tr T 2) .

al-- ,, p P
22 2

But, because of symmetry, [t (n) 2 tr T thus

2- 1 2n 2 n 1  kl I kn2 pr+ 2S trT tr T tr T trr T p-1 -t( p kP P . P

So, by Lemma A since Ptr T q XqdG(M.

sp p =o p .
2 k-w+1 2

S= tJ 0(p ) in L

by Lemma 2.

6 12



4. PROOF OF EXISTENCE OF E(Mk) WHEN p -

Let F (X) be the spectral distribution of the matrix

-W T , i.e., F (X) =-# {i:£ ' X}, here k < .<k are eigen-
M p p p -- p

values of -W T. Note that because W T = W W T and W T W
m pp P P P P P P P P

have the same eigenvalues and W T W is symmetric, t1,..
p p p p

are all real.

Let

Mk =fJ xkdF (x), k =1,2,....

In this section we will prove that EM k -+E k as p-*o and

2k

E 2k

We have

f kd~ 1 f k 1 p k "

" xkd d F (x) = - tr (!W T)
k. p P -1 i p mp.p

w ... ti k

pm 2k 2k 1,

here the sum is taken with respect to each index i1 1 2...i 2k

running from 1 to p. Remember
m

w = X
ii ij=l

So

M 1 X X X ... X X t 1 1 tl 1  ...t2lk k - .Xi j i J 3
pm 1 i ij 2 i 4 j 2  2k-ljk 1 2kk 2 3 4 5 2k 1

here Jl,...,jk run from 1 to m.

Noticing X and t are independent, we have
iJ ij

k
EM 1I X " E t  " ' ' t i

pm q=l 2q-ljq 2qjq E 2345 2k

13



Since for different (i,j), Xij s are independent, we would

collect the factors Xi 2 qljq Xi 2qjq together for equal j qs,

and split such factors for different j 's. Thus for eachq

X-product we have a partition A= {A 1,...,A w  of the set

{l,2,...,k) such that two integers q and q' belong to the

same A class iff j q=jq,. The whole sum is then split into

a sum of sums, each of the latter has the same partition A.

Thus,

k
EM= E H E t t

pm A (J)IA (i) q=2 2q-1q 2qjq 2 4 1

here means summation over all possible partitions of
A

{l,2,...,k}, (j)JA means j iff q and q' belong to a
q i

common A class.

Given A = {AI,...,A}, a partition of {l,2,...,k},

given vector (j) =(j...J) such that j J iff a,b belongj)=(l'''k) suhta a Jb

to the same A class, we denote the different w values of

Jl,.,Jk by rl...,rw, and understand that ra = j b if b E A.

Then the inner sum of EMk is

A, (r) - E I E r iikira=1-lr brAa [t 2 3t 5 *t 2kil]*SA()(i) a=l iiA

ba[i2b-1rai2bra

Given a partition A of (1,2,...,k} we can correspond

a partition A* of {1,2,...,2k} in such a way: if A= {All'...A }, then

A* = {A*,...,A* here A*a= (2A -I)U(2A ), or equivalently,
1 a a

neA* iff [n+l]cA With the aid of A*, we can write
a 2 a

14



w
SA .,(r) (t) r~ a)A* t 2 t2 tt'* 2kt 1 '

a

In order that a term in this sum does not vanish, it is necessary

that each E 11 Xb a  0. And if this holds, A* must be Further
a r a

-C b a

partitioned into classes, each class contains even number of

elements and ib = Ib, iff b,b belong to the same class. As

a whole, we must have a partition B of {1,2,...,2k), it is

even, a refinement of A*, and if b,b' belong to the same A*

class, then ib = ib , iff b and b' belong to the same B class,

w
in order that 11 E 1 X. # 0. In this case.

a=l bEA* br a
a

w
R E R X. = K(A*,B)

a=l beA* lb a
a

depends only on A*,B and is independent of special values

of (M).

Thus

% , r K (A * , B ) E t t i t  . . . t t

B>A* (i)A*,B 2 3 4 5 2k 1
B even

Here B>A* means partition B of {l,2,...,2k} is a refinement

of A* (i)IA*,B means if b,b' both belong to a same A* class

then ib = ib, iff b and b' belong to the same B class. We

see that SA,(r )  is independent of (r).

Suppose B is a pairing. Then we can define a Q-graph

G(A*,B). The edges are 1213, 415,..., 2k The vertices

are pairs [iai where {a,b} is a B-class. The classes

of vertices are determined by A*.

15



Case 1. B is a pairing and G(A* B) has less than

k-w+l cycles. We consider the sum

SAB = E tti ti5. .. ti i
(i)IA*,B 2 3 4 5 2k 1

Because G(A*,B) is a Q-graph, i2 i3 ,i4 i5 ,. ,i ki1  constitute

v < k-w+l cycles. Thus

SA*,B= E CIC 2 . .Cv ,

J I " Jk

here C's are "cycles", Ca t t t
hee C a  Jaja 2 a2 a3  ac al Jl'" 'Jk

means the sum is taken with respect to k identified indices

Jl,....Jk varying from 1 to p but when two of them belong to the

same class of vertices determined by A*, they must knep different mutually.

Thus SA*,B can be expressed as

S = E ClC 2 -. Cv ,SA*'B Ii1 . . . , I u  |

here ll'''''lu are inequalities of the form jaii between two

hee u are a~ bewnto

indices belonging to the same class of vertices. By inclusion-e> lusion

principle,

SA*,B =

- l ji~ + - ...

a ab "I a<b<c I Tb
Jl 'k Ia a~ a, b  a, b' c

here I denotes the negation of I a By Lemma 3 the terms ina a

the bracket are all o(p k-W+), and by Lemma A

S... nv 0pV pk-w+l=E tr T .. tr T =O()op

p P
Jl...,Jk .

16



Therefore, in .this case

SA k-w+lSA*,B ' (p) .

Case 2. Some B class contains more than 2 elements.

By Lemma 3 and the Inclusion-exclusion principle, it is seen

in the same manner that

SAB o(pk-w+l

Case 3. B is a pairing and G(A*,B) has k-w+l cycles.

combining the above discussion

EM=- I I I Y K (A*, B) E t t tk i ii~i iki
pm A(J)IA B>A* (i)IA*,B 2 3 4 1 2k 1

B-even

--k I r(m-1) •.•.• (m-+) + Y"+") 1 K(A*,B)Et i i 2ki*
pm A (i)IA*,B 3 4 5 2k 1

Here, w is the number of classes of A, ', " " correspond

Case 1, Case 2 and Case 3 respectively. Notice that for Case

3, K(A,B) = 1. Thus

k w
E Mk I I m k E(ti 13 t i 15  .t ) + o(l).

w=l A,A has pm BA* (i2IA* B 2k I
w classes B even (

We need the following lemma.

Lemma. Given a partition A of {l,2,...,k) with w classes

and then a partition A* of {l,2,...,2k), there is at most one

pairing B subject to A* such that C(A*,B) is a Q-graph with

* k-w+l cycles.

Proof. Suppose G(AA,B) has k-w+l cycles. Then,

10. If t2r and I2r+l belong to the same A* class, they

17



must be identified. Otherwise, there would be a cycle

meets two vertices with a class.

20. There are no sequences of the form:

A* L A* L A A* L A
a' 2' a 3  a r arer A1A

here A*-.,A* 'A* are different classes and L is a simple
a a 2 ' a r-q

path begins at a vertex in A* and ends at a vertex in
a

q
A* (q 1 I,... ,r; a = a ), and the end of L and the
a q+1 r+l 1 q-1

beginning of L are not identified though they are both in

A* r

a q

For, if such sequence exists, L should be completed byq

other path into a cycle C q q = 1,...,r. If these cycles are

different, then we will have a sequence

A ,, C .A Aa r AL' 1C 2* C2,. ,A* , C, a*

2r

which is prohibited by Lemma 1. Suppose C = C and CI,...,Cd+l 1 dl.

are distinct, we would have the prohibited sequence

A* , C2 A* .. ,C A* , C A*
a 2 2' a3' d' ad+l ' 2

Thus 20 is proved.

If G(A*,B) has k-w+l cycles, then as we just proved,

10, 2 are true. And if we start from i2 i 3 , preserving 1

and 20, we see that it is determined completely which indices

should be identified. Thus C(A*,B) is unique.

By applying this lemma,

E M Mw~ A W E ti i t i i 5  t i i+ol
A w, A pm (i)!A*,B 2 3 4 5 2kil) + o( )

18
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Here, ~'means summation over those partition A of
A

(1,2,...,k} with w classes, for which there is a pairing

B of (l,2,...,2kj, B> A*, such that the Q-graph G(A*,B)

has just k-w+l cycles.

If among .the k-w+l cycles of G(A*,B), there aren

loops, n 2 cycles with 2 vertices,..., n wcycles with w ver-

tices, then

n +n + -.+n =k-w+l,1 2 w

n I+2n 2+. ..+wnw = k,

and by Lemma 3 and inclusion-exclusion principle

nn fl -+1 2 2 w kwl
ti2i13 i 14i15 *** 2k (tTp (rP .. (r + p

(.i)IA*,B 2

But by Lemma A, for all r>l, as p -

n n n n n n
E (-trT I (It rT 2) 2... (trT ) w H-H 2 ... H

p p p p p p 1 2 w

we have

k k-w H nI Hn n
E m imE k Iy1 2 Aw Nn n .n
W-1 n I+n 2 +... +n =k-w+l 1 2- w

n 1+2n 2 +..+wn =k

Here N nn n is the number of those partitions A of the

0 set {1,2,...k) into w classes, for each such A there

exists a pairing B of fl,2,...,2k}, B> A *, and the Q-graph

G(A*,B) has n I loops, n 2 cycles with 2 vertices ..., n wcycles

* of w vertices.

19



S7

For evaluating N we note that to each such G(A*,B) we
nfln.n
1n2• • w

can construct a finite sequence of integers in the following way: we draw

this graph along the order 12j3P 14 15,* ... 2k I., and the sequence is

defined as

10. The 1st term is 0,

2 . The 2nd, 4-th,...,2k-th terms are 1,

03° . If I2r 12r+1 just completes a cycle of length s, then the

2r+l-th term is -s, otherwise 2r+l-th term is 0.

Such sequence has the properties that: it has 2k+l terms, even

number terms are 1, odd number terms < 0, total sum is 0, partial sums > 0.

It is easy to see that N is the number of such sequences,
w

in which there are n places with -1, n2  places with -2,...,n places

with -w. With the aid of a lemma in Jonsson [4,5], it is seen that

N1 (k+l)!

n . n  k+l nI ... n k+l-(k-w+l))!

k!
nl..w! w

Then

E k k-w k! n1  nE "7 H, * l . ! w S .H W,
k fi .. n I nwn 1+...+n =k-w+l w

I w
n 1+ . .. +wnw=k

By a well-known inequality about moments, if k is even,

nl n2  nw k(nl +2n2+ '.+wn )
H1  H ... 2Hw = H

Thus

S k! n'+" (k-w+l)! n, n2 .. y  w
k l k I k y (-)w+l)!!l n y ...y

W-i n +.+n =k-w+l 1. W

nI+... +wnw=k

20



The Inner sum is the yk term of the polynomial (~ 2 +k..+Y l

But this polynomial is dominated by the power series

(y+y 2 +.)k-w+l k-w+l ( -- k+w-l

k
its y term Is

(k-w+l)(k-w+2) .. (k-i) yk - (k-i)! k
*(W-1), (w-l)!(k-w)!-

Therefore, if k is even,

lEt <1  k k1 (k-i)! k
k1K kI -i _________(w_ 1 (ki)

k yI (v+lfl(k-v)! (k-v-l)!v-!
V=

H k-i k ' ) ,(+)2
V k

So,

JE Itk> 1 k
k even k- (i+y)2 k even k

21



4. ASYMPTOTIC LIMIT OF VARIANCE OF Mk

In this section we prove that for any integer k > 1

Var M k EM 2 -(EMk) 2  0 as p -, a.

Then we will complete the prooJ of the theorem.

We have

2 1 k
2~k 2k E 11x
p (J)JA (i) A' (J')IA' (i') q=l I 2q-liq Xi2qiqj

_J, I, ) ..ti-kilt '4';~i ... ti2k'i

q'=l 2q'-I ' X2q'Jq' 2 3 45 2k 2 4

Here,

A - a partition of {1,2,...,k},

A'- a partition of {k+l,...,2k),

(j) (J.1 .. , ,k ) ,  1__! i__ 1< < M

'ji )ff 1 1 I :S ' . . , 11.< J < m ,
WJ) QJ"''k (jk+l" '2k )  Ilm. -k-

(i) - (il,...,i<k) p il<P,. .. ,la <ik <
2 ik 1~ ~ 2i k if<-ip

(() (2,.. ) l ..... 40 , 1 < 'I<P,. .- < '2' <_P

(J)JA means Ja -b iff a and b belong to the same A class.

(J')IA' means J' Jb iff a and b belong to the same A' class.

2
We split the sum for EMk into two parts:

EMk 2 2k + 2 2k 2"
p m p m

In E1 we collect all those terms in which some coordinates

of (J) equal some coordinates of (J'). In 12 we collect

all other terms.

e 22



But 2= 13 -4' here

3E (J) IA (i)jE q=l1 2q-lJqi2qJq) t2345" t2k 1=3 E E 1 X .. .

A' (J )jA' (i') q=l [2q-1iq 23

[A=E (i)IJA (i) q= q[Xi2q-ljqXi2qjqJ
1  2 3ii5i2 1

k
A' (J')jA',(J')n(j)jO (i2) 1

From Section 3 and the hypothesis of the theorem, it is seen that

212 2

2 2k 13 ( E] k

In 14 ,(J')[A' has w' free indices, here w' is the number

of classes in A'. But (j')n(j)# , so some j' have to be
a

fixed to some Jb" Thus the number v' of free indices in

(J')[A' is less than w'. So,

O(m k-w'+ (pk),

A' (j')A', (J')n(j)#p (i') A'

and as p "

I I = 1 E [IAmW (pk-w+l (pk) (2 2k 4 2 2k A 0p m p r A

*D Therefore, as p - ,

_ _ 2
2k 12 Ek'

p m

23



As for l, we at first fix A and A'. Under (j)IA,

the k indices Jl,...,Jk reduce to w different values

t... and tinder (W')A', the k indices reduce

to W' different values h... ,  . i h' must
h b Nwi s om

equal some hb. As an example, suppose h i =h h' =h but

no other such relations. In this case, we consider the parti-

tion of {1,2,...,2k}:

= (A'$ 2  ' A) = (AIUA, A 2 uA , A 3 ,... ,Aw , A,..., 
)

*Q
In order that a term in I corresponding A,A' and hl h,

h 2 = h'. does not equal 0, i.e.

2k

E(1 12k 1 X1 1  E (t~~ii... i'2kil i'2k+2i2k+3i'2k+4i2k+5 i*t4ki2k+lJ

00,

it is necessary that there is a pairing B of {1,2,...,4k) such that each pair

is included in an A* class, here the * has the same meaning as before, and

if a,b is such a pair then i a= .i Thus, under such identifications,

t i i3 4 5...t2ktl t2k+2t2k+3' 2k+4 2k+5,...t4kI2k+l constitute a multi-

graph, consisting of disjoint cycles. This graph is a Q-graph, because it

is easy to see that the w+w' -2 classes are connected by these edges. So

it has at most 2k-w-w' +2+1 cycles. If there need more Identifications,

we can quotate Lemma 3. Then, as p -,

22k = 2 2 0(m w +w'- r 2k -w -w' + r +i-1pO(p 0 ,2 - 1 2 2k A '
p m p mkA A'

here r is the general number instead of the specific 2 in the

example.

Therefore

M 2 (M 2 2 2 0
Var M k - Ek)2 E -E = .
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